Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Advanced genome editing technologies have enabled rapid and flexible rewriting of theEscherichia coligenome, benefiting fundamental biology and biomanufacturing. Unfortunately, some of the most useful technologies to advance genome editing inE. colihave not yet been ported into other bacterial species. For instance, the addition of bacterial retrons to the genome editing toolbox has increased the efficiency of recombineering inE. coliby enabling sustained, abundant production of ssDNA recombineering donors by reverse transcription that install flexible, precise edits in the prokaryotic chromosome. To extend the utility of this technology beyondE. coli, we surveyed the portability and versatility of retron-mediated recombineering across three different bacterial phyla (Proteobacteria, BacillotaandActinomycetota) and a total of 15 different species. We found that retron recombineering is functional in all species tested, reaching editing efficiencies above 20% in six of them, above 40% in three of them, and above 90% in two of them. We also tested the extension of the recombitron architecture optimizations and strain backgrounds in a subset of hosts to additionally increase editing rates. The broad recombitron survey carried out in this study forms the basis for widespread use of retron-derived technologies through the whole Bacteria domain.more » « less
-
Abstract We analyze 330 ks of Chandra X-ray imaging and spectra of the nearby, edge-on starburst and Seyfert type 2 galaxy NGC 4945 to measure the hot gas properties along the galactic outflows. We extract and model spectra from 15 regions extending from −0.55 to +0.85 kpc above and below the galactic disk to determine the best-fit parameters and metal abundances. We find that the hot gas temperatures and number densities peak in the central regions and decrease along the outflows. These profiles are inconsistent with a spherical, adiabatically expanding wind model, suggesting the need to include mass loading and/or a nonspherical outflow geometry. We estimate the mass outflow rate of the hot wind to be 1.6M⊙yr−1. Emission from charge exchange is detected in the northern outflow, and we estimate it contributes 12% to the emitted, broadband (0.5–7 keV) X-ray flux.more » « less
-
Abstract We present a detailed analysis of nearly two decades of optical/UV and X-ray data to study the multi-wavelength pre-explosion properties and post-explosion X-ray properties of nearby SN2023ixf located in M101. We find no evidence of precursor activity in the optical to UV down to a luminosity of$$\lesssim$$$$1.0\times10^{5}\, \textrm{L}_{\odot}$$, while X-ray observations covering nearly 18 yr prior to explosion show no evidence of luminous precursor X-ray emission down to an absorbed 0.3–10.0 keV X-ray luminosity of$$\sim$$$$6\times10^{36}$$erg s$$^{-1}$$. ExtensiveSwiftobservations taken post-explosion did not detect soft X-ray emission from SN2023ixf within the first$$\sim$$3.3 days after first light, which suggests a mass-loss rate for the progenitor of$$\lesssim$$$$5\times10^{-4}\,\textrm{M}_{\odot}$$yr$$^{-1}$$or a radius of$$\lesssim$$$$4\times10^{15}$$cm for the circumstellar material. Our analysis also suggests that if the progenitor underwent a mass-loss episode, this had to occur$$>$$0.5–1.5 yr prior to explosion, consistent with previous estimates.Swiftdetected soft X-rays from SN2023ixf$$\sim$$$$4.25$$days after first light, and it rose to a peak luminosity of$$\sim10^{39}$$erg s$$^{-1}$$after 10 days and has maintained this luminosity for nearly 50 days post first light. This peak luminosity is lower than expected, given the evidence that SN2023ixf is interacting with dense material. However, this might be a natural consequence of an asymmetric circumstellar medium. X-ray spectra derived from merging allSwiftobservations over the first 50 days are best described by a two-component bremsstrahlung model consisting of a heavily absorbed and hotter component similar to that found usingNuSTAR, and a less-absorbed, cooler component. We suggest that this soft component arises from cooling of the forward shock similar to that found in Type IIn SN2010jl.more » « less
-
In this paper, we study the filamentary substructure of 3.3 $$\mu$$m polycyclic aromatic hydrocarbon (PAH) emission from JWST/NIRCam observations in the base of the M 82 star-burst driven wind. We identify plume-like substructure within the PAH emission with widths of $$\sim$$50 pc. Several of those plumes extend to the edge of the field-of-view, and thus are at least 200–300 pc in length. In this region of the outflow, the vast majority ($$\sim$$70 per cent) of PAH emission is associated with the plumes. We show that those structures contain smaller scale ‘clouds’ with widths that are $$\sim$$5–15 pc, and they are morphologically similar to the results of ‘cloud-crushing’ simulations. We estimate the cloud-crushing time-scales of $$\sim$$0.5–3 Myr, depending on assumptions. We show this time-scale is consistent with a picture in which these observed PAH clouds survived break-out from the disc rather than being destroyed by the hot wind. The PAH emission in both the mid-plane and the outflow is shown to tightly correlate with that of Pa $$\alpha$$ emission (from Hubble Space Telescope data), at the scale of both plumes and clouds, though the ratio of PAH-to-Pa $$\alpha$$ increases at further distances from the mid-plane. Finally, we show that the outflow PAH emission reaches a local minimum in regions of the M 82 wind that are bright in X-ray emission. Our results are consistent cold gas in galactic outflows being launched via hierarchically structured plumes, and those small scale clouds are more likely to survive the wind environment when collected into the larger plume structure.more » « less
-
Abstract The healthy herds hypothesis proposes that predators can reduce parasite prevalence and thereby increase the density of their prey. However, evidence for such predator‐driven reductions in the prevalence of prey remains mixed. Furthermore, even less evidence supports increases in prey density during epidemics. Here, we used a planktonic predator–prey–parasite system to experimentally test the healthy herds hypothesis. We manipulated density of a predator (the phantom midge, Chaoborus punctipennis ) and parasitism (the virulent fungus Metschnikowia bicuspidata ) in experimental assemblages. Because we know natural populations of the prey ( Daphnia dentifera ) vary in susceptibility to both predator and parasite, we stocked experimental populations with nine genotypes spanning a broad range of susceptibility to both enemies. Predation significantly reduced infection prevalence, eliminating infection at the highest predation level. However, lower parasitism did not increase densities of prey; instead, prey density decreased substantially at the highest predation levels (a major density cost of healthy herds predation). This density result was predicted by a model parameterized for this system. The model specifies three conditions for predation to increase prey density during epidemics: (i) predators selectively feed on infected prey, (ii) consumed infected prey release fewer infectious propagules than unconsumed prey, and (iii) sufficiently low infection prevalence. While the system satisfied the first two conditions, prevalence remained too high to see an increase in prey density with predation. Low prey densities caused by high predation drove increases in algal resources of the prey, fueling greater reproduction, indicating that consumer–resource interactions can complicate predator–prey–parasite dynamics. Overall, in our experiment, predation reduced the prevalence of a virulent parasite but, at the highest levels, also reduced prey density. Hence, while healthy herds predation is possible under some conditions, our empirical results make it clear that the manipulation of predators to reduce parasite prevalence may harm prey density.more » « less
-
Abstract We analyze image and spectral data from ≈365 ks of observations from the Chandra X-ray Observatory of the nearby, edge-on starburst galaxy NGC 253 to constrain properties of the hot phase of the outflow. We focus our analysis on the −1.1 to +0.63 kpc region of the outflow and define several regions for spectral extraction where we determine best-fit temperatures and metal abundances. We find that the temperatures and electron densities peak in the central ∼250 pc region of the outflow and decrease with distance. These temperature and density profiles are in disagreement with an adiabatic spherically expanding starburst wind model and suggest the presence of additional physics such as mass loading and nonspherical outflow geometry. Our derived temperatures and densities yield cooling times in the nuclear region of a few million years, which may imply that the hot gas can undergo bulk radiative cooling as it escapes along the minor axis. Our metal abundances of O, Ne, Mg, Si, S, and Fe all peak in the central region and decrease with distance along the outflow, with the exception of Ne, which maintains a flat distribution. The metal abundances indicate significant dilution outside of the starburst region. We also find estimates of the mass outflow rates, which are 2.8M⊙yr−1in the northern outflow and 3.2M⊙yr−1in the southern outflow. Additionally, we detect emission from charge exchange and find it makes a significant contribution (20%–42%) to the total broadband (0.5–7 keV) X-ray emission in the central and southern regions of the outflow.more » « less
-
Abstract We present new observations of the central 1 kpc of the M82 starburst obtained with the James Webb Space Telescope near-infrared camera instrument at a resolutionθ∼ 0.″05–0.″1 (∼1–2 pc). The data comprises images in three mostly continuum filters (F140M, F250M, and F360M), and filters that contain [Feii] (F164N), H2v= 1 → 0 (F212N), and the 3.3μm polycyclic aromatic hydrocarbon (PAH) feature (F335M). We find prominent plumes of PAH emission extending outward from the central starburst region, together with a network of complex filamentary substructures and edge-brightened bubble-like features. The structure of the PAH emission closely resembles that of the ionized gas, as revealed in Paschenαand free–free radio emission. We discuss the origin of the structure, and suggest the PAHs are embedded in a combination of neutral, molecular, and photoionized gas.more » « less
-
Star formation in galaxies is regulated by turbulence, outflows, gas heating and cloud dispersal -- processes which depend sensitively on the properties of the interstellar medium (ISM) into which supernovae (SNe) explode. Unfortunately, direct measurements of ISM environments around SNe remain scarce, as SNe are rare and often distant. Here we demonstrate a new approach: mapping the ISM around the massive stars that are soon to explode. This provides a much larger census of explosion sites than possible with only SNe, and allows comparison with sensitive, high-resolution maps of the atomic and molecular gas from the Jansky VLA and ALMA. In the well-resolved Local Group spiral M33, we specifically observe the environments of red supergiants (RSGs, progenitors of Type II SNe), Wolf-Rayet stars (WRs, tracing stars >30 M⊙, and possibly future stripped-envelope SNe), and supernova remnants (SNRs, locations where SNe have exploded). We find that massive stars evolve not only in dense, molecular-dominated gas (with younger stars in denser gas), but also a substantial fraction (∼45\% of WRs; higher for RSGs) evolve in lower-density, atomic-gas-dominated, inter-cloud media. We show that these measurements are consistent with expectations from different stellar-age tracer maps, and can be useful for validating SN feedback models in numerical simulations of galaxies. Along with the discovery of a 20-pc diameter molecular gas cavity around a WR, these findings re-emphasize the importance of pre-SN/correlated-SN feedback evacuating the dense gas around massive stars before explosion, and the need for high-resolution (down to pc-scale) surveys of the multi-phase ISM in nearby galaxies.more » « less
An official website of the United States government

Full Text Available